Anisotropic photocurrent response at black phosphorus-MoS2 p-n heterojunctions.

نویسندگان

  • Tu Hong
  • Bhim Chamlagain
  • Tianjiao Wang
  • Hsun-Jen Chuang
  • Zhixian Zhou
  • Ya-Qiong Xu
چکیده

We investigate the photocurrent generation mechanisms at a vertical p-n heterojunction between black phosphorus (BP) and molybdenum disulfide (MoS2) flakes through polarization-, wavelength-, and gate-dependent scanning photocurrent measurements. When incident photon energy is above the direct band gap of MoS2, the photocurrent response demonstrates a competitive effect between MoS2 and BP in the junction region. In contrast, if the incident photon energy is below the band gap of MoS2 but above the band gap of BP, the photocurrent response at the p-n junction exhibits the same polarization dependence as that at the BP-metal junction, which is nearly parallel to the MoS2 channel. This result indicates that the photocurrent signals at the MoS2-BP junction primarily result from the direct band gap transition in BP. These fundamental studies shed light on the knowledge of photocurrent generation mechanisms in vertical 2D semiconductor heterojunctions, offering a new way of engineering future two-dimensional materials based optoelectronic devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polarized photocurrent response in black phosphorus field-effect transistors.

We investigate electrical transport and optoelectronic properties of field effect transistors (FETs) made from few-layer black phosphorus (BP) crystals down to a few nanometers. In particular, we explore the anisotropic nature and photocurrent generation mechanisms in BP FETs through spatial-, polarization-, gate-, and bias-dependent photocurrent measurements. Our results reveal that the photoc...

متن کامل

Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode.

Phosphorene, a elemental 2D material, which is the monolayer of black phosphorus, has been mechanically exfoliated recently. In its bulk form, black phosphorus shows high carrier mobility (∼10,000 cm(2)/V·s) and a ∼0.3 eV direct band gap. Well-behaved p-type field-effect transistors with mobilities of up to 1000 cm(2)/V·s, as well as phototransistors, have been demonstrated on few-layer black p...

متن کامل

MoS2 Heterojunctions by Thickness Modulation

In this work, we report lateral heterojunction formation in as-exfoliated MoS2 flakes by thickness modulation. Kelvin probe force microscopy is used to map the surface potential at the monolayer-multilayer heterojunction, and consequently the conduction band offset is extracted. Scanning photocurrent microscopy is performed to investigate the spatial photocurrent response along the length of th...

متن کامل

Electroluminescence and Photocurrent Generation from Atomically Sharp WSe2/MoS2 Heterojunction p–n Diodes

The p-n diodes represent the most fundamental device building blocks for diverse optoelectronic functions, but are difficult to achieve in atomically thin transition metal dichalcogenides (TMDs) due to the challenges in selectively doping them into p- or n-type semiconductors. Here, we demonstrate that an atomically thin and sharp heterojunction p-n diode can be created by vertically stacking p...

متن کامل

Study of Photo-Conductivity in MoS2 Thin Films Grown in Low-Temperature Aqueous Solution Bath

An experimental study over the optical response of thin MoS2 films grownby chemical bath deposition (CBD) method is presented. As two important factors, theeffect of bath temperature and growth time are considered on the photocurrentgeneration in the grown samples. The results show that increasing the growth time leadsto better optical response and higher difference betw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 7 44  شماره 

صفحات  -

تاریخ انتشار 2015